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Abstract

In this paper, a compact high order (up to 12th order) numerical method to solve the compressible Navier–Stokes

equations will be presented. A staggered arrangement of the variables has been used. It is shown that the method is not

only very accurate but numerically also very stable even in the case that not all the energy containing scales in the flow

are resolved. This in contrast to standard (collocated) compact finite difference methods. Some results for a turbulent

non-reacting and a reacting jet with a Reynolds number of 10,000 and a Mach number of 0.5 are reported.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

High order compact finite difference schemes, see for instance [8,3,10,1], have been widely used for the

solution of compressible Navier–Stokes equations, see e.g. [11]. The advantage of compact finite difference

schemes over standard finite difference schemes is the good accuracy for a large range of wave numbers in

combination with low numerical diffusion and small dispersion errors. That is why sometimes the phrase
‘‘spectral resolution’’ is used in combination with compact finite difference schemes. Furthermore, compact

finite difference methods are computationally much more efficient than finite element methods (e.g. spectral

elements) with the same order of accuracy.

However, when compact finite difference schemes are used for problems in which non-linear terms play

an important role, for instance a turbulent flow, short wave numerical instabilities occur due to aliasing

errors. These short waves are due to low molecular damping on the grid scales. Decreasing the grid spacing
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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will, in general, solve this problem. However, for a large three dimensional calculation this is in general not

a desirable option.

Common practice is to remove the numerical instability by spatially filtering the solution with a high order

(compact) filter [8,7]. In some studies this filtering is performed every integration step, in other studies this

filtering is performed every few hundred steps. Filtering every time step will lead to a large amount of artificial
diffusion while filtering say every 100 time steps will lead to spurious fluctuations in time. To avoid these short

wave instabilities some researchers have used high order upwind schemes [16]. However, this type of discret-

ization will most likely influence the smaller turbulent scales due to the added numerical viscosity.

Recently, [12] published a compact finite difference method in which the variables were arranged in a

staggered formulation, they show that this method is superior to the standard compact finite difference

method for a few standard test cases.

In the present paper, we will introduce a staggered finite difference method which differs slightly from the

one proposed by [12]. The method we formulate is a straightforward extension of the classical marker and
cell method of [5]. It will be shown that this method is able to handle a wide range of physical phenomena

such as combustion and aeroacoustics, with rather low numerical resolutions, i.e. it is not necessary to re-

solve all flow features for a stable numerical calculation. This is an indication that the present method is a

good candidate for a large Eddy simulation (LES).

The organization of this paper is as follows. In Section 2, we will introduce the governing equations. In

Section 3, we will discuss the numerical method in detail. Next in Section 4, we will give some numerical

examples. Finally, we will draw some conclusions in Section 5.
2. Governing equations

In this section, we will give the governing equations for mass, momentum, energy and scalar transport in

a compressible fluid [14]. The equation for conservation of mass reads:
oq
ot

þ o

oxi
qui ¼ 0: ð1Þ
In which q is the fluids density and ui the velocity vector. The equation for conservation of momentum

reads:
oqui
ot

þ o

oxj
½quiuj þ p� ¼ o

oxj
sij: ð2Þ
In which p is the pressure and sij the viscous stress tensor. Here, we will consider Newtonian flows only and

the components of the stress tensor can be written as:
sij ¼ l
oui
oxj

þ ouj
oxi

� 2

3

ouk
oxk

� �
;

where l is the dynamic viscosity of the fluid. Which is in the present study assumed to be constant. The

governing equation for the total energy E which is the sum of the internal energy qCvT and the kinetic en-

ergy quiui/2 reads:
oE
ot

þ o

oxj
ðuj þ pÞE ¼ o

oxi
j
oT
oxi

þ o

oxj
uisij þ hfx: ð3Þ
In which E = qCvT + quiui/2 is the total energy, j the thermal diffusion coefficient, x a source due to the

chemical reaction and hf the formation enthalpy of a chemical reaction. The thermodynamic quantities

P, q and T are related to each other by the equation of state for an ideal gas
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P ¼ qRT ;
where R is the gas constant.
The transport of the chemical species Yj is governed by the following equation
oqY j

ot
þ o

oxj
qujY j ¼ o

oxi
jj

oY j

oxi
� x; ð4Þ
where jj is the diffusion coefficient of the jth chemical species. For the source term we use Arrhenius kinet-

ics, i.e.
x ¼ A½qY j�½� � �� expð�KR=T Þ: ð5Þ

In which K is the activation energy of the chemical reaction and A is the pre-exponential factor. The actual

form of Eq. (5) depends on the composition of the chemical system, see for instance [14].

All the variables in the equations given above are made non-dimensional using the ambient speed of
sound c1 as reference velocity scale, the ambient density q1 as reference density, q1c

2
1 as reference pres-

sure, c21=Cp as reference temperature, and ambient values for the chemical species. The resulting non-

dimensional numbers are the Reynolds, Prandtl, Schmidt and Mach numbers.
3. Computational method

In this section, we will describe the computational method and discuss some implementation issues.
The governing equations given in Section 2 are discretized on a staggered non-uniform grid in physical

space. For the calculation of the derivative of a certain function f on this non-uniform grid the function f is

mapped on a uniform grid with help of the following transformation
of
ox

¼ of
oX

dX
dx

! of
ox

dX
dx

� ��1

¼ of
oX

; ð6Þ
where x is the coordinate on the non-uniform mesh and X the coordinate on the uniform mesh. A known

analytical function is used for X so that the dX/dx can be calculated exactly. The restriction on the trans-
formation given by Eq. (6) is that dX/dx should not become zero inside the computational domain.

We have chosen for a staggered grid in which the scalar variables are located in the center of the cell and

vector quantities on the cell faces. This is illustrated in Fig. 1, where we show a grid cell in 2D. The actual

discretization is of course performed in three dimensions. The arrangement of the variables is similar to the

one used by Harlow and Welch [5] in their classical paper. The staggered arrangement of course leads to

some additional work. For instance, if we want to calculate oqu/ox in Eq. (1) we first have to interpolate

the density, which is a scalar and therefore located at the cell center, to the face of the cell. With the inter-

polated value of the density we can form the product qu. Subsequently, we can calculate the derivate oqu/ox
at the cell face and interpolate the result to the center of the cell or we can try to evaluate the derivative

directly at the center of the cell using information on the faces. The latter is what we will do in the present

study.
3.1. First derivative

In the governing equations (1)–(5) only first order derivatives appear. So we only have to consider a for-

mula for the first derivative. In some studies, see for instance [12], the term on the right hand side of Eq. (2)
is recasted in a non-conservative form using the chain rule. This non-conservative form, in which second

order derivatives appear is used because of additional the damping of high wave number components.
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Fig. 1. A two dimensional cell of the computational grid. The actual discretization is performed in three dimensions.
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In this study, we have directly discretized the right hand side of Eq. (2) and therefore we only need an

expression for the first derivative. It turned out that the additional damping due to the second order deriv-

atives of the velocity are not necessary for stability in the present method.
The first derivative will always be evaluated on a staggered uniform grid as is shown in Fig. 2. If the

variables are known at points i + 1/2, i + 3/2, . . . we can use the following formula to calculate the deriva-

tives at the points i, i + 1, . . .
aðf 0
iþ1 þ f 0

i�1Þ þ f 0
i ¼

b
DX

ðfiþ1=2 � fi�1=2Þ þ
c
DX

ðfiþ3=2 � fi�3=2Þ þ
d
DX

ðfiþ5=2 � fi�5=2Þ þ
e
DX

ðfiþ7=2 � fi�7=2Þ:

ð7Þ

In which f 0

i is derivative of f with respect to X in point i and DX is the (uniform) grid spacing. The coef-

ficients in the equation above are obtained by Taylor expansions around grid point i. With the five coeffi-

cients a, b, c, d and e in Eq. (7), we can obtain an 10th order accurate formulation. The values for a, b, c, d

and e for this 10th order scheme are (obtained with the Maple software package):
a ¼ 49=190; b ¼ 12985=14592; c ¼ 78841=364800; d ¼ �343=72960; e ¼ 129=851200:
This formula can only be used far away from the boundaries. Closer to the boundaries we have to make the

stencil smaller, i.e. e = 0. The coefficients for the resulting 8th order scheme read:
a ¼ 25=118; b ¼ 2675=2832; c ¼ 925=5664; d ¼ �16=28320; e ¼ 0:
Even closer to the boundary we have to use the 6th and 4th order formulation
a ¼ 9=62; b ¼ 63=62; c ¼ 17=186; d ¼ 0; e ¼ 0; OðDX 6Þ;
i+1/2

i=1       2       3        4       5 i

Fig. 2. The distribution of the grid points.
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a ¼ 1=22; b ¼ 12=11; c ¼ 0; d ¼ 0; e ¼ 0; OðDX 4Þ:

At the boundary itself we use a one sided 3rd order accurate formulation
f 0
i þ 23f 0

iþ1 ¼
1

DX
�25f iþ1=2 þ 26f iþ3=2 � fiþ5=2

� �
:

The approximations above lead to a tridiagonal system with can be inverted easily and efficiently.

In the derivation of Eq. (7) we assumed that the variable was known in between the points i and i + 1. In

the case that the variables are known on the nodes i and that we want to know the derivative at point i + 1/2

we can use the same formula but we have to shift the data over half a grid cell and we have to solve for

n � 1 instead of n grid points.
3.2. Interpolation and extrapolation

Apart from the relation for the first derivative we also need an interpolation procedure to interpolate

variables from the locations i to locations i + 1/2 and vice versa. This should preferably be done with a

method which has the same formal accuracy as the method which is used to obtain the derivatives. Here,

we consider the following compact interpolation rule
fi þ aðfiþ1 þ fi�1Þ ¼ bðfiþ1=2 þ fi�1=2Þ þ cðfiþ3=2 þ fi�3=2Þ þ dðfiþ5=2 þ fi�5=2Þ þ eðfiþ7=2 þ fi�7=2Þ: ð8Þ
In the interior we require again 10th order accuracy resulting in the following values for the coefficients a, b,

c, d and e (again obtained with the Maple software package):
a ¼ 7=18; b ¼ 1225=1536; c ¼ 49=512; d ¼ �7=1536; e ¼ 1=4608:
Closer to the boundaries the stencil has to be made smaller, i.e. e = 0:
a ¼ 5=14; b ¼ 25=32; c ¼ 5=64; d ¼ �1=448; e ¼ 0; OðDX 8Þ:

Even closer to the boundary we have to use 6th an 4th order schemes, i.e.
a ¼ 3=10; b ¼ 3=4; c ¼ 1=20; d ¼ 0; e ¼ 0; OðDX 6Þ;

a ¼ 1=6; b ¼ 2=3; OðDX 4Þ:

At the boundary we use again a one sided 3rd order accurate formulation (actually this is an extrapolation

instead of an interpolation):
fi ¼ 15=8f iþ1=2 � 5=4f iþ3=2 þ 3=8f iþ5=2:
The formulas above result in a tridiagonal system which can be inverted easily. Again we can use the same

rule to interpolate from points fi to points fi+1/2 by shifting the data over half a grid cell and evaluating for

n�1 instead of n points.
The mapping, given by Eq. (6) takes care of the effect of the non-uniform grid on the derivatives. For the

function f itself we cannot use such a mapping. Formally we could construct an interpolation rule for non-

uniform grids. In which the difference in grid-spacings between points i,i � 1 and i,i + 1 are taken into ac-

count. However, in the literature it is shown, see e.g. [17], that with such a non-uniform interpolation the

kinetic energy quiui/2 is not conserved numerically. [17] shows that only with a uniform (symmetric) inter-

polation kinetic energy is conserved. Conservation of kinetic energy is a good start for a stable numerical

solution.

Therefore, we use the interpolation rule (8) also on non-uniform grids. Formally, this will reduce the
local truncation error of the scheme. However, this is the only way to strictly satisfy conservation of kinetic

energy on a computational grid, see e.g. [17].
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In the following paragraphs we will explain how all the terms in the equations of motion are discretized.

3.3. Discretization of mass

The equation for conservation of mass, Eq. (1) is discretized around the center of the cell, see Fig. 1. First
the density is interpolated from the cell center to the cell faces with help of Eq. (8). The fluxes qui on the

faces can be calculated. Subsequently, the derivatives of oqui/oxi are calculated at the cell center using Eq.

(7) and the equations are advanced in time. The fluxes qui are stored for further usage in the discretization

of the other equations.

3.4. Discretization of scalars

For the convective terms in the scalar equations (total energy and species) we use the following pro-
cedure. Firstly, the scalars qYj and qCvT are interpolated to the cell faces, using the interpolation rule

(8). Subsequently, the interpolated scalars are multiplied with the velocity component on the faces. Eq.

(7) is then used to calculate the derivative at the cell center. For the diffusive terms, Eq. (7) is used to

calculate the gradients, oYj/oxi and oT/oxi at the cell faces. In case of non-constant material properties

the material properties l, j, jj are interpolated to the cell faces, using Eq. (8), and the diffusive fluxes

are formed. Next, Eq. (7) is used to calculate the derivative of the diffusive fluxes at the cell-center.

Once the convective and diffusive terms are known at the cell-center the equations can be advanced

in time.

3.5. Discretization of momentum

The momentum equations are discretized around the velocity points which are located at the cell face.

The momentum equation in the x-direction is discretized around the u point in Fig. 1 and the momentum

equation in the y-direction is integrated around the v point in Fig. 1.

The convective terms oquiui/oxi are calculated by interpolating the velocity components from the cell

faces to the cell centers. At the cell centers the product quiui is formed and Eq. (7) is used to calculate
the derivate at the cell face. The terms oquiuj/oxj are calculated by interpolating the flux qui (which is still

available from the integration of the equation for conservation of mass) to the corner of the grid cell (the

black dot in Fig. 1). The velocity uj is also interpolated to the same point and the product quiuj is formed.

Again Eq. (7) is used to calculate the derivative at the cell face. The pressure gradient can be calculated

directly with Eq. (7) because of the staggered arrangement. The diffusive terms are calculated in the same

manner as the convective terms. After the evaluation of the spatial derivatives the equations can be ad-

vanced in time.

3.6. Boundary conditions

The formulation of the boundary conditions is of course problem specific. In this paper, we will consider

a simple jet diffusion flame and we will describe the boundary treatment for this problem. A sketch of the

geometry we consider is shown in Fig. 3.

The jet flow is to be considered subsonic, i.e. the velocity is always smaller than the speed of sound. At

the jet inlet we specify the velocity, density and temperature profiles. For a subsonic flow this type of

boundary condition is mathematically ill-posed. Therefore, we have added a small region to the domain
in which an artificial convection velocity is added to the equations to make the flow locally supersonic. This

is a well known procedure, see for instance [4]. At the side boundaries we set the primitive variable to their

reference values and at the outflow we use a simple characteristic boundary condition. Surprisingly, this
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Fig. 3. A sketch of the geometry: A cylindrical jet with velocity U flowing through an orifice with diameter D into a Cartesian box.
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gives in the staggered formulation no significant reflections. For a combustion problem, as is discussed here,

reflections on the boundaries are not so important. For an acoustic problem, where reflections should be

avoided, probably some additional damping layers will be necessary.

The boundary conditions are always applied at the faces of the grid cells. For instance, if we want to

apply a specific value for the velocity on the top face of the cell shown in Fig. 1 we can put Vij equal to

this value. To apply the boundary conditions to u velocity component we first have to use the extrapola-

tion/interpolation rule (Eq. (8)) to extrapolate the velocity to the point indicated by the black dot in
Fig. 1. This extrapolated value is set to zero and the interpolation rule (8) is used to calculate a new value

for uij. Due to the implicit nature of the method this means also that the interior points will be slightly

modified.

3.7. Time advancement

For the time advancement we use standard integration methods for Navier–Stokes equations, like a 4th

order Runge–Kutta method or a 3rd order Adams–Bashforth method. The Runge–Kutta method is com-
putationally more efficient and we will in general use this method.

3.8. Parallel implementation

The algorithm is implemented in Fortran 77/90 using the message passing interface (MPI) for the

parallelization. Two data distributions are used one in which the full data set denoted by Nx · Ny · Nz

is distributed on Ncpu processors as Nx · Ny · Nz/Ncpu and one in which the data is distributed as

Nx · Ny/Ncpu · Nz. The redistribution of the date between the two distributions is performed with help
of the MPI-routine MPI_ALLTOALL. The calculation of derivatives, and interpolations in the x and

y directions are performed on the first data distribution. Derivatives and interpolation in z-direction

are performed on the second data distribution. The code scales reasonable well as can be seen

from Table 1 in which we show CPU times for a grid of 1283 on a SGI-ORIGIN 3800 parallel

processor.



Table 1

CPU times on a SGI-ORIGIN 3800

Ncpu time/Dt time/(Dt) Æ Ncpu

1 409 s 409 s

2 208 s 416 s

4 99 s 397 s

8 42 s 333 s

16 19 s 304 s

32 12 s 371 s

Ncpu denotes the number of processors used, time/Dt is the wall clock time for a single Runge–Kutta 4 timestep. The last column is the

CPU time which is actually charged by the operating system. The calculation using 16 CPU�s is thus the most efficient.
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3.9. Numerical tests

In this section, we will present the results of some basic test which we performed with the staggered

formulation.

It is common practice to calculate the modified wave number of a numerical scheme. Modified wave
numbers are derived by substituting exp(iwx) in the difference equation. For instance, for the second order

central difference
df
dx

¼ fiþ1 � fi�1

2Dx
:

We find the following expression after the substitution of exp(iwx)
exp½iwðxþ DxÞ� � exp½iwðx� DxÞ�
2Dx

¼ expðiwxÞ i sinðwDxÞ
Dx

¼ iw0 expðiwxÞ;
where w is the wave number and w 0 the so-called modified wave number. Depending on the finite dif-

ference scheme w 0 can have different forms. w 0 = w denotes exact differentiation. It is straightforward to

derive the modified wave number for the staggered scheme, Eq. (7) and the results looks promising.
However, if in an actual staggered discretization df/dx is calculated, this requires for the convective

terms (which are in a turbulent flow very important) always an interpolation in combination with a

staggered compact finite difference. The same is true for conventional (second order) staggered finite dif-

ference methods. The modified wave number of this combined operation is not so easily to calculate by

hand. Therefore, we calculate the modified wave number numerically by assuming a single wave and

differentiating this wave numerically for different values of Dx and compare this with the exact result.

The advantage of this numerical approach to calculate the modified wave number is that also the effect

of the lower accuracy near the boundaries is taken into account. In Fig. 4, we show the modified wave
numbers of the staggered compact finite differences schemes combined with interpolation procedure with

the same order. For comparison we also include the modified wave number for a collocated 6th order

compact finite difference method [8]. It should be noted that in the numerical calculation of the mod-

ified wave number we used lower order accuracy near the boundaries of the domain as outlined in Sec-

tion 3.1.

The figure shows that the 10th order staggered scheme has the best properties. Although differences are

very small and can hardly be considered significant. The most important conclusion we can draw from Fig.

4 is that the staggered schemes have similar resolving capabilities as the collocated schemes and that no
spectacular improvement in the results should be expected.
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Secondly, let us consider the differential equation
oC
ot

þ ouC
ox

¼ 0; Cðx; 0Þ ¼ 0; Cð0; tÞ ¼ 1; CðL; tÞ ¼ 0; uðx; tÞ ¼ 1: ð9Þ
The differential equation is discretized on a staggered grid, see Fig. 2. The interpolation procedure is used

to interpolate the scalar C to the position of the velocity point u. The product uC is formed and Eq. (7) is
used to calculate the derivative at the position of the original C point. The equations are subsequently

integrated in time with a 3rd order Adams–Bashforth scheme. Boundary conditions are imposed by

extrapolating the scalar field to the boundary point. The scalar on the boundary is set to the desired va-

lue and the result is interpolated back to the original C point. This procedure is fairly complicated for

such a simple equation. However, this is exactly the same strategy as we use for the Navier–Stokes

equations.

In Fig. 5, we show the numerical solution of Eq. (9) for four different orders of the spatial

discretization at time t = 12. For comparison we also included the result for a non-staggered grid with
a standard 6th order compact finite difference. All the numerical solutions show a similar behavior, a

slight overshoot/undershoot. The non-staggered 6th order compact finite difference is better than the

staggered 6th order. Increasing the order of the staggered schemes slightly improves the results. The

performance of the staggered scheme is a somewhat disappointing when compared to the collo-

cated scheme. This is due to the additional interpolations which are necessary in the staggered formu-

lation. A stability analysis for the staggered compact finite difference scheme is presented in

Appendix A.

From the test presented in this section, we can conclude that the staggered formulation has similar
resolving capabilities as the collocated formulation. The only added value of the staggered formulation

is the increased numerical stability. The cost we have to pay for this is of course additional CPU time

due to the many interpolations which have to be carried out on the staggered grid. The increased numerical

stability is illustrated by the next example which is impossible to calculate with a collocated compact finite

difference method.



Fig. 5. Advection of a passive scalar with different orders of the spatial discretization, (s) denotes a staggered formulation and (c) a

collocated formulation.
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4. Jet flow

We have performed numerical simulations of a round turbulent jet with a Reynolds number based on the

jet nozzle diameter and velocity of 10,000. The numerical resolution consisted of 192 · 128 · 128 grid points

in the x (downstream) and y, z (cross stream) directions.1 This grid is certainly not fine enough to resolve all

the turbulent scales in the flow. However, it is well known that this type of flow, i.e. free shear flows, is

governed by large scales and resolving these large scales will produce accurate flow statistics. At the plane

x = 0 the following relation is used for the velocity in the x-direction:
1 Th

directi
uð0; y; zÞ ¼ Ma
1

2
� 1

2
tanh 30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
� 1

4

� �� �
; ð10Þ
where Ma is the Mach number. The other two velocity components at the plane x = 0 are set to zero. The

density and temperature are equal to the reference values. This is a well posed boundary conditions, be-

cause the flow is locally supersonic due to the additional supersonic convection velocity at in and outflow

(see also paragraph 3.6). To trigger the transition to a turbulent state small white noise perturbations with a

maximum amplitude of 1 · 10�4Ma are superimposed on the velocity components in the y and z directions
e following relations have been used for the grids in x and y directions (the grid in the z-direction is identical to the grid in the y-

on):

xi ¼
ði� 0:5Þ3:75

192
þ 1

� �2

; i ¼ 1; . . . ; 192;

yj ¼ 2:2 � ðj� 63:5Þ � 2:75
128

3

þ ðj� 63:5Þ � 2:75
128

; j ¼ 1; . . . ; 128:
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at the inflow plane, x = 0 The equations are integrated in time with the 4th order Runge–Kutta method.

The CFL number was �0.5 and the number of time steps �20,000.

4.1. Non-reacting case

First, we will consider a non-reacting jet, i.e. the chemical species can be considered as passive scalars. In

Fig. 6, we show a snapshot of the passive scalar and a zoom-in close to the jet nozzle. The lines in this figure

denote the (rather course) computational grid in physical space. Near the jet nozzle the flow is laminar and

a few diameters downstream a Kelvin–Helmholtz instability develops, eventually resulting in a fully three

dimensional turbulent flow. It should be noted that the scalar is discretized with a fully central method, i.e.

no artificial dissipation. Low order central methods would give a considerable over and undershoot, result-

ing in significant negative concentrations. Common practice is to remove these negative concentrations

using a TVD scheme, see for instance [15,9]. The present high order central method, with the associated
high resolution on the small scales, does not produce significant over and undershoots.

In Fig. 7, we compare the decay of the jet centerline velocity, labeled ‘‘Fine’’, with other simulations [2],

and experiments [13,6]. The decay rate of the present calculation is in good agreement with earlier exper-

imental and numerical studies. To investigate the grid (in)dependence of the solution we have also per-

formed a calculation on a resolution of 128 · 80 · 80. The result of this simulation is labeled ‘‘Coarse’’

in Fig. 7. Close to the jet nozzle there is a considerable difference between the coarse and fine grid results.

The reason for this is that on the coarse grid the transition from a laminar to a turbulent state is not prop-

erly resolved. Far downstream of the jet nozzle, the turbulent length scales are large and both grids are able
to resolve these scales in some detail. The difference between the 192 · 128 · 128 result and results reported

in the literature can be attributed to compressibility effects (Ma = 0.5 vs. Ma = 0), the size of the compu-

tational box (no special treatment has been used to calculate the entrainment of the jet) and to some extend

grid dependence. The grid dependence could be investigated by performing a simulation on a much finer

grid, but this is beyond the scope of the present paper.
4.2. Reacting jet

Now we will consider the case in which there is a chemical reaction with heat release. We will consider

the simple chemical reaction:
FþO ! P:
The jet fluid is assumed to be pure fuel, F and the surrounding is to be assumed pure oxidizer, O. The reac-

tion rate of this chemical reaction is given by the Arrhenius equation
x ¼ Aðq2Þ½F�½O� expð�K=RT Þ:

The fuel and oxidizer concentration [F] and [O] are normalized between 0 and 1. In the jet nozzle the fuel

concentration is 1 and the oxidizer concentration is 0. In the free stream the fuel concentration is 0 and the
oxidizer concentration is 1. In the region where fuel and oxidizer are mixed the product [F][O] is non-zero.

If the temperature in this region is sufficiently high, x will be non-zero and there will be a heat production

hfx. The value of x depends of course on the pre exponential factor A but also on the value of K, i.e. the

activation energy. For, most fuels the value of the activation is pretty high. Thats why we aim at high values

of KR, i.e. the chemical reaction is only significant when T is rather high. The Reynolds and Mach numbers

are the same as in the previous case, i.e. 10,000 and 0.5.

In Fig. 8, we show the density distribution in the jet. Cold fluid (fuel) is entering the domain through the

jet nozzle. Due to the chemical reacting heat is released and the density drops. Realistic density ratios (un-
burned/burned) are 4–6. The present model is able to handle density ratios in this range (see legend Fig. 8). In
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Fig. 9, we show the fuel F distribution in the jet. If we compare the distribution with the distribution in Fig. 6

for the non-reacting case we see a considerable decrease in F in the downstream region. For a realistic flame

one would expect a zero fuel concentration far downstream. That is not the case in the present flame. This is
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probably due to inadequate turbulent mixing of fuel and oxidizer. Finally, we show in Fig. 10 the reaction

rate x. The reaction rate is only non-zero in regions where the fuel and oxidizer are mixed and the temper-

ature is high. The distribution ofx is not smooth, but this is not a problem for the present numerical method.
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5. Conclusion

In this paper, we have presented a staggered formulation for the compressible Navier–Stokes equations

using high order compact finite differences. The arrangement of the variables on the computational grid is

similar as was used by Harlow and Welch [5]. We have shown that the resolution characteristics of the stag-
gered method are similar to a collocated compact finite difference method. The advantage of the present

staggered method is that it is very stable, which is not the case with a collocated finite difference method

and that no ad-hoc filtering of the velocity field is necessary to avoid numerical instabilities. To demonstrate

the numerical stability we have shown results from two test cases in which the numerical resolution is to

coarse to resolve all scales of motion.

The ability to under resolve fluid motions makes the present numerical method a good candidate for a

LES. In a LES the unresolved scales are modeled with a model, the so-called subgrid model. Modern sub-

grid scales models do not always have a positive eddy viscosity and one cannot rely on the stabilizing effect
of the subgrid model.
Appendix A. Stability analysis of the linear advection equation

In Section 3.9, we considered the numerical solution of the following equation
oC
ot

þ oC
ox

¼ 0: ð11Þ
Here, we will perform a stability analysis of the solution method for this equation. The first step, discussed

in Section 3.9, was to interpolated C1/2,. . .,n� 1/2 from the midpoints to the gridpoints Ĉ0;...;n. In matrix nota-

tion this can be written as
T1Ĉ ¼ AC;
where T1 is a (n + 1) · (n + 1) matrix containing the left hand side of Eq. (8) with boundary conditions, Ĉ a

vector with n + 1 elements, A a matrix with dimension (n + 1) · n containing the right hand side of Eq. (8)

and C is a vector with n elements. The second step in the discretization of Eq. (11) is the compact differ-

entiation. This can be expressed in matrix form as
T2C
0 ¼ BĈ;
where T2 is a matrix (with n · n elements) containing the left hand side of Eq. (7), B a matrix containing the

right hand side of Eq. (7) and C 0 is a vector containing the spatial derivatives at the grid points. With some

matrix algebra we can write
C0 ¼ T�1
2 BT�1

1 AC:
The solution of Eq. (11) is stable if the norm of the semi-discrete solution
kCk2t ¼
d

dt
ðCT � CÞ ¼ � CTðT�1

2 BT�1
1 AÞTCþ CTðT�1

2 BT�1
1 AÞC

h i
is constant or decreases in time, i.e. the eigenvalues of
ðT�1
2 BT�1

1 AÞT þ ðT�1
2 BT�1

1 AÞ ð12Þ

should be positive (or zero).

In Fig. 11, we have plotted the eigenvalues of Eq. (12) for the 10th order spatial discretization given in

Sections 3.1 and 3.2. All the eigenvalues are positive and the numerical simulation of the differential equa-
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tion will be stable. The eigenvalue with the highest index does not follow the curve. This is caused by the

different (one sided) formulation on the boundaries of the domain.
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